Practical Applications of
 Reliability Theory

George Dodson

Spallation Neutron Sourc

Topics

- Reliability Terms and Definitions
- Reliability Modeling as a tool for evaluating system performance
- In the design phase what are the tradeoffs of cost vs. reliability performance?
- In the operational phase, does the performance meet expectations?
- Analysis of the failure rate of systems or components
- How do systems fail?
- Is the failure rate "reasonable"?
- Analytical calculation for the number of Spares
- What kinds of spares are there?
- What is a "reasonable" number of spares?

Reliability Terms

- Mean Time To Failure (MTTF) for non-repairable systems
- Mean Time Between Failures for repairable systems (MTBF)
- Reliability Probability (survival) R(t)
- Failure Probability (cumulative density function) $F(t)=1-R(t)$
- Failure Probability Density f(t)
- Failure Rate (hazard rate) $\lambda(\mathrm{t})$
- Mean residual life (MRL)

Important Relationships

$$
R(t)+F(t)=1
$$

$$
f(t)=\lambda(t) \exp \left(-\int_{0}^{t} \lambda(u) d u\right)=d F(t) / d t \quad F(t)=\int_{0}^{t} f(u) d u
$$

$$
R(t)=1-F(t)=\exp \left(-\int_{0}^{t} \lambda(u) d u\right) \quad \lambda(t)=f(t) / R(t)
$$

Where $\lambda(t)$ is the failure rate function

MTBF

The MTBF is widely used as the measurement of equipment's reliability and performance. This value is often calculated by dividing the total operating time of the units by the total number of failures encountered. This metric is valid only when the data is exponentially distributed. This is a poor assumption which implies that the failure rate is constant if it is used as the sole measure of equipment's reliability.

Modeling

- There are essentially 2 types of models
- Static
- $\lambda(t)$ s constant
- Easy, if only life were this simple
- Dynamic
- $\lambda(t$ has a complex functional form
- To build a model:
- Create a logical structure of components
- Specify the reliability of each component
- Drill down the structure as deep as you need to and/or have data

SNS Static Model $\ell(t)$ is constant) Uses Markov Chains

$\begin{array}{l\|l\|l\|} \hline & s & A \\ S & u & s \\ y & b & s \\ s & s & e \\ t & y & d \\ e & s & b \\ m & t & 1 \end{array}$	Equipment/Failure Mode			Failure Rate$\left(1 / \mathrm{h} \times 10^{-5}\right)$		Failure Rate Source		MTBF (h)	Percen t of Antici pated Failur es	Effective MTBF for Unanticipated Failures (h)		Effective No. of Failure Rate Equipm $\left(1 / \mathrm{h} \times 10^{-6}\right)$ ents		No. of Spares Includ ed	Type of Redun dancy ($1=$ hot $2=\mathrm{col}$ d)	Repair (0=off line, $1=$ on- line, $2=$ sup ermod	Effective Total Faiture Rate ($1 / \mathrm{h} \times 10^{\circ}$ ${ }^{6}$)
DTL RF Transmitter																	
Transmitter				180.	. 00	Max		5556	0	5555.6			1.0	1	0	0	180.00
HVPS				35.00	. 00	Ander		28571	0	28571.4			1.0	1	0	0	35.00
Klystron				20.00	. 00	Tallerico (P)	AC2001)	50000	0	50000.0			2.0	1	0	0	40.00
Load				13.3	33	Tallerico (P)	AC2001)	75019	0	75018.8			2.0	1	0	0	26.66
Circulator				20.		Tallerico (P)	AC2001)	50000	0	50000.0			2.0	1	0	0	40.00
LLRF				10.		Tallerico	AC 2001)	100000	0	100000.0			2.0	1	0	0	20.00
DTL/CCL RF Window				10.0		Tallerico	AC2001)	100000	0	100000.0			2.0	1	0	0	20.00
ONE DTL RF STATION TOTAL										2763.3							361.66
RFQ and DTL RF										919.8			3.0	0	0	0	1084.98
r				$1 \quad u$		\checkmark		\wedge	1		\leqslant		mm				
Estimated Average Annual Frequenc y of Repairs (=Spares)	Repair Personnel Required	Mean Time To Repair MTTR (h)	MTTR Source	 Other Delays MTTR d (h)	Switch- over Time MTTS (h)	Mean Down Time MDT (h)	Maximum Acceptable Total MDT/MTBF eff ($\mathrm{x} 10^{-}$ ${ }^{6}$)	Estimated Average Total Annual Repair Time (h)		Steady State Availability	Mission Time (h)		ity sion				

1.40	2	2.0	allerico (PAC200)	0	2.0	360.00	5.58	0.999640	160	0.971611
0.27	2	4.0	allerico (PAC200)	0	4.0	140.00	2.17	0.999860	160	0.994416
0.31	3	3.5	allerico (PAC200)	0	3.5	140.00	3.26	0.999860	160	0.993620
0.21	3	3.0	allerico (PAC200)	0	3.0	79.98	1.86	0.999920	160	0.995743
0.31	3	3.0	'allerico (PAC200)	0	3.0	120.00	2.79	0.999880	160	0.993620
0.16	2	2.0	allerico (PAC200)	2	4.0	80.00	1.24	0.999920	160	0.996805
0.16	2	25.0	allerico (PAC200)	2	27.0	540.00	8.37	0.999460	160	0.996805
2.80	3	3.0		0.00	4.0	1459.98	25.27	0.998541		0.943777
8.41					4.0	4379.94	75.81	0.995630	160	0.840545

Dynamic Model

Uses of the Model

- Design Phase
- Model is a simple "what if" tool for evaluating performance to compare the projected system reliability with the customer's expectations.
- Operational Phase
- Validate model parameters with measured performance. Are you getting what you expected?
- If not, questions to ask include, was the system:
- Designed wrong
- Built wrong
- Installed wrong
- Operated wrong
- Maintained wrong
- In a "sick" location

Time Distributions (Models) of the Failure Rate Function

- Exponential Distribution

$$
f(t)=\lambda e^{-\lambda t}
$$

$>$ Very commonly used, even in cases to which it does not apply (simple);
$>$ Applications: Electronics, mechanical components etc.

- Normal Distribution

$$
f(t)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(t-\mu)^{2}}{2 \sigma^{2}}}
$$

$>$ Very straightforward and widely used;
$>$ Applications: Electronics, mechanical components etc.

- Lognormal Distribution

$$
f(t)=\frac{1}{\sqrt{2 \pi} \sigma t} e^{-\frac{(\ln t-\mu)^{2}}{2 \sigma^{2}}}
$$

$>$ Very powerful and can be applied to describe various failure processes;
$>$ Applications: Electronics, material, structure etc.

- Weibull Distribution

$$
f(t)=\frac{\beta}{\eta}\left(\frac{t}{\eta}\right)^{\beta-1} e^{-\left(\frac{t}{\eta}\right)^{\beta}}
$$

$>$ Very powerful and can be applied to describe various failure processes;
$>$ Applications: Electióords, Rechaniciait bon National Laboratory SOURCE components, material, structure etc.

Exponential Model

- Definition: Constant Failure Rate

$$
\begin{aligned}
\lambda(t) & =f(t) / R(t)=\lambda \\
f(t) & =\lambda \exp (-\lambda t) \quad \lambda>0, t \geq 0 \\
R(t) & =\exp (-\lambda t)=1-F(t) \\
R(x \mid t) & =P_{r}(T>t+x \mid T>t)=\frac{\mathrm{e}^{-\lambda(t+x)}}{e^{-\lambda t}}=e^{-\lambda x}=R(x)
\end{aligned}
$$

Exponential Model Cont.

- Statistical Properties

$$
\begin{aligned}
& \operatorname{MTTF}=\frac{1}{\lambda} \longrightarrow \begin{aligned}
R(M T T F) & =e^{-\lambda \times M T T F} \\
& =e^{-1}=0.367879
\end{aligned} \\
& \operatorname{Var}(T)=\frac{1}{\lambda^{2}}
\end{aligned}
$$

Median life $=(\ln 2) \frac{1}{\lambda}=0.693147 \times$ MTTF

Weibull Model

- Definition

$$
\begin{gathered}
f(t)=\frac{\beta}{\eta}\left(\frac{t}{\eta}\right)^{\beta-1} \exp \left[-\left(\frac{t}{\eta}\right)^{\beta}\right] \quad \beta>0, \eta>0, t \geq 0 \\
R(t)=\exp \left[-\left(\frac{t}{\eta}\right)^{\beta}\right]=1-F(t) \\
\lambda(t)=f(t) / R(t)=\frac{\beta}{\eta}\left(\frac{t}{\eta}\right)^{\beta-1}
\end{gathered}
$$

- \quad is tne snape rarameter and
- $\beta_{\text {is the }}$ Characteristic Lifetime (1/e) survival η

Weibull Model Continued:

- Statistical Properties

Median life $=\eta\left((\ln 2)^{1 / \beta}\right)$

Versatility of Weibull Model

Graphical Model Validation

- Use a Q-Q Plot for checking normality
 Distribution Quantiles
- The result should be linear in $\ln ($ (time) in the middle of the plot
- Estimate $Q\left(t_{i}\right)=1 / \hat{F}\left(t_{i}\right)$ at for t_{i} using Bernard's Formula

$$
\hat{F}\left(t_{i}\right)
$$

$$
\left(t_{1}, t_{2}, \ldots, t_{i}, \ldots t_{n}\right)
$$

For n observed failure time data

$$
{ }^{\mathrm{a}} \hat{F}\left(t_{i}\right)=\frac{i-0.3}{n+0.4}
$$

Example: Q-Q of Weibull Distribution and Weibull Fit (works well)

- T~Weibull(1,4000) Generate 50 data points

Example: Q-Q Weibull Distribution and TNormal Fit (obviously wrong functional form)

- T~Normal(100, 400) Generate 50 data points

Analysis of the Failure Rate of Systems or Components

With a relatively modest failure data set you can:

- Determine what your failure rate is at any given time
- Watch this rate change with time, through Infant Failures and into Random Failures
- Predict the onset of Terminal Failures
- Alerts you to watch more closely for the predictive symptoms of failure
- Determine the cost-effectiveness of proactive replacement before failure occurs
- Closely watch your Spares (number of spares, time to repair or acquire replacements, cost)

Weibull in Excel

by William W. Dorner
Many people use Microsoft Excel on a daily basis. Yet few people realiz the extent of Excel's analytical capabilities. Fewer still put these capabilitie work for process improvement, product improvement and profit.Most Exce users are aware of the common formulas and charts. But with some creativ users can produce tools like control charts, Pareto charts and box-and-whis plots (see "Using Excel for Data Analysis," Quality Digest, October 1997). And with a little guidance, users can employ more advanced statistical

http://www.qualitydigest.com/jan99/html/body_weibuHyhtml

Weibull Using MS Excel

Figure 1: Failure Data			
Design A		Design B	
Sample	Cycles	Sample	Cycles
1	726,044	11	529,082
2	615,432	12	729,957
3	508,077	13	650,570
4	807,863	14	445,834
5	755,223	15	343,280
6	848,953	16	959,903
7	384,558	17	730,049
8	666,686	18	730,640
9	515,201	19	973,224
10	483,331	20	258,006

Figure 2: Preparing Design A for Weibull Analysis

	A	B	C	D	E	F
1	Design A Cycles	Rank	Median Ranks	$1 /(1 \sim$ Median Rank)	$\ln (\ln (1 /(1 \sim$ Median Rank)) $)$	\ln (Design A Cycles)
2	384,558	1	0.067307692	1.072164948	-2.663843085	12.8598499
3	483,331	2	0.163461538	1.195402299	-1.72326315	13.088457
4	508,077	3	0.259615385	1.350649351	-1.202023115	13.13838829
5	515,201	4	0.355769231	1.552238806	-0.821666515	13.15231239
6	615,432	5	0.451923077	1.824561404	-0.508595394	13.33007974
7	666,686	6	0.548076923	2.212765957	-0.230365445	13.41007445
8	726,044	7	0.644230769	2.810810811	0.032924962	13.4953659
9	755,223	8	0.740384615	3.851851852	0.299032932	13.53476835
10	807,863	9	0.836538462	6.117647059	0.593977217	13.60214777
11	848,953	10	0.932692308	14.85714286	0.992688929	13.6517591

1) Order by number of cycles (in accelerators, hours to failure)
2) Calculate the "Median Rank" $=((\mathrm{B} 2-0.3) /(10+0.4))$
3) Be sure that the Analysis ToolPak Add-In is loaded into Excel.

While on the page you just created, from the menu bar, select
Tools and Data Analysis. Scroll down and highlight "Regression" and click OK. A data-entry window will pop up.
2.Under "Input Y Range," type: \$E\$1:\$E\$11.
3.For "Input X Range," type: \$F\$1:\$F\$11.
4. Click to add a checkmark in the box for "Labels."
5.For "Output Options," select "New Worksheet Ply."
6.Click to add a checkmark in the box for "Line Fit Plots."
7.Click OK. Excel will perform the regression and place the output on a new worksheet.

National Laboratory SOURCE
Figure 3: Results of linear Regression for Design a

	A	B	C	D	E	F	G
1	SUMMARY OUTPUT						
2							
3	Regression Statistics						
4	Multiple R	0.98538223					
5	R Square	0.97097815					
6	Adjusted R Square	0.96735041					
7	Standard Error	0.20147761					
8	Observations	10					
9							
10	ANOVA						
11		$d f$	55	MS	F	Significance F	
12	Regression	1	10.86495309	10.86495309	267.6543319	$1.96274 \mathrm{E}-07$	
13	Residual	8	0.324745817	0.040593227			
14	Total	9	11.18969891				
15							
16		Coefficients	Standard Error	t Stat	P-value	Lower 95\%	Upper 95\%
17	Intercept	-57.1930531	3.464488033	-16.5083708	$1.82953 \mathrm{E}-07$	-65.18218204	-49.2039242
18	In(Design A Cycles)	4.2524822	0.259929377	16.36014462	$1.96274 \mathrm{E}-07$	3.653083597	4.851880811
19	Beta (or Shape Para	eter) $=4.25$					
20	Alpha (or Character	ic Life) $=693,3$					
21			$>$				

SNS RF High Voltage Converter Modulator 2008

CCL1 hours to failure	Rank	Median Ranks	1/(1-Median Rank)	$\ln (\ln (1 /(1-$ Median Rank)))	\ln (Design A Cycles)
0.75	1	0.067307692	1.072164948	-2.66384309	-0.28768207
0.9	2	0.163461538	1.195402299	-1.72326315	-0.10536052
20.3	3	0.259615385	1.350649351	-1.20202312	3.01062089
73.4	4	0.355769231	1.552238806	-0.82166652	4.29592394
91.8	5	0.451923077	1.824561404	-0.50859539	4.5196123
97.2	6	0.548076923	2.212765957	-0.23036544	4.57677071
578.9	7	0.644230769	2.810810811	0.032924962	6.36112975
609.2	8	0.740384615	3.851851852	0.299032932	6.41214662
912.2	9	0.836538462	6.117647059	0.593977217	6.81585926
2115	10	0.932692308	14.85714286	0.992688929	7.65681009

Regression Statistics						
Multiple R		0.969525286				
R Square		0.93997928				
Adjusted R Square		0.93247669				
Standard Error		0.289744238				
Observations		10				
ANOVA						
	d		SS	MS	F	Significance F

Regression		SS	MS	F	Significance F
Residual	1	10.51808512	10.51808512	125.2873043	$3.63718 \mathrm{E}-06$
Total	8	0.671613788	0.083951723		

	Coefficients	Standard Error	t Stat	P-value	Lower 95\%	Upper 95\%	Lower 95.0\%	Upper 95.0\%
Intercept	-2.217586473	0.176953141	-12.53205486	$1.53932 \mathrm{E}-06$	-2.625641148	-1.809531798	-2.625641148	-1.809531798
In(Design A Cycles)	0.391732899	0.034997459	11.19318115	$3.63718 \mathrm{E}-06$	0.311028614	0.472437184	0.311028614	0.472437184
Beta (or Shape Parameter) $=$	0.391732899							
Alpha (or Characteristic Life) $=$	287.4260525							

RESIDUAL OUTPUT

Observation	Predicted $\ln (\ln (1 /(1-M e d i a n ~ R a n k)))$	Residuals	
1	-2.330281006	-0.33356208	
	2	-2.258859654	0.535596503
	3	-1.038227226	-0.16379589
	4	-0.534731736	-0.286934779
	5	-0.447105645	-0.061489749
6	-0.424714814	0.194349369	
	7	0.274277326	-0.241352364
	8	0.294262312	0.00477062
	9	0.452409836	0.141567381
	10	0.781837942	0.210850988

$$
\text { Beta }=0.39 \text { (Infant Failures) }
$$

Alpha $=287$
Adjusted R square $=0.93$
The λ for an Exponential model $=475!!$菤OAK RIDGE

Spallation NEUTRON SOURCE

VME Crate Power Supplies (2009)

VME hours to failure Rank	Median Ranks		1/(1-Median Rank)	$\begin{aligned} & \ln (\ln (1 /(1-\mathrm{Median} \\ & \text { Rank))) } \end{aligned}$	\ln (Design A Cycles)
7536	1	0.009162304	1.009247028	-4.688058902	8.927446816
8544	2	0.022251309	1.022757697	-3.794124242	9.052984561
29136	3	0.035340314	1.036635007	-3.324794914	10.2797298
30240	4	0.048429319	1.050894085	-3.002931896	10.31692083
36024	5	0.061518325	1.065550907	-2.756842175	10.49194066
41496	6	0.07460733	1.080622348	-2.556998447	10.63335232

SUMMARY OUTPUT

Regression Statistics	
Multiple R	0.931357
R Square	0.867426
Adjusted R Square	0.834283
Standard Error	0.319986
Observations	6

ANOVA							
						Significanc	
	$d f$		SS	MS	F	F	
Regression	1	2.679769	2.679769	26.17191	0.006906		
Residual	4	0.409564	0.102391				
Total	5	3.089333					

	$\begin{gathered} \text { Coefficient } \\ s \end{gathered}$	Standard Error	t Stat	P-value	Lower 95\%	$\begin{gathered} \hline \text { Upper } \\ 95 \% \\ \hline \end{gathered}$	$\begin{aligned} & \text { Lower } \\ & 95.0 \% \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Upper } \\ & 95.0 \% \\ & \hline \end{aligned}$
Intercept	-12.9954	1.889141	-6.87899	0.00234	-18.2405	-7.75029	-18.2405	-7.75029
In(Design A Cycles)	0.968949	0.189401	5.115849	0.006906	0.443086	1.494812	0.443086	1.494812
Beta (shape Parameter)	0.968949	\leqslant						
Alpha	667861.2	77.65828						
	Hrs	Years	-					
RESIDUAL OUTPUT				-	Bet	$=0$.		
Observation	Predicted $\ln (\ln (1 /(1-$ Median Rank)))	Residuals			$A 1 p$	$1 a=7$	\mathbf{Y}	
1	$1-4.34514$	-0.34292						
2	$2-4.2235$	0.42938						
3	3-3.03485	-0.28994						
4	$4-2.99881$	-0.00412						
5	$5-2.82923$	0.072387						
6	6 -2.69221	0.13521						

In(Design A Cycles)
 Line Fit Plot

Spares

Classes of Spares
In all evaluations of Mean Time to Repair, there are assumptions on the availability of spares for systems, structures and components. In most cases, the assumption is that there is a spare of some sort available to install. There are a number of classes of spares. They include;

- A "true spare" consisting of a "like for like or equivalent" "on the shelf, tested and ready to go ", "plug compatible" replacement unit.
- A "like for like or equivalent" that is installed in some other system that is not required for operation of the accelerator systems e.g. a Test Stand.
- A system structure or component that must be modified to be used as a spare.

Only a "true spare" will not contribute to down time. In both other classes, demounting and modification of the replacement will necessarily contribute to downtime.

Spares

Beyond the "larger of 10% or 2 " rule of thumb, the evaluation of the baseline number of spares should include a calculational basis which considers:

1. Number of installed units
2. Mean Time Between Failures (estimated at first, then validated against experience)
3. Mean Time to Repair or Replace in the calculation.

The result will be a Mean Time to Out of Stock as a function of the number of spare units.

- Spares Calculator code is available - validated against MIL Spec U.S. Navy, Reliability Engineering Handbook, NAVAIR 01-1A-32

Spares Calculator 2010 Professional
 Powerful and Easy to Learn Spare Parts Forecasting Software

Spares Calcuator 2010 Professlonal is a powerfu and accurate tool that lets you work out the risk of equipnent stock-out so that you can plan your cortracts and logstics operations accordingly. What's more, the package is easy to use $s 0$ there's no need for specialst knowledge, complex manuals or time consuming rairing. Whether you supply, procure or manage spare equipment, Spares Calcuator makes an essential purchase.

Key Facts

1. Easy to use spare parts forecasting software.

Use Spares Calculator Professlonal to determine the optimumlevel of spare parts Inventory. Trade-off spare parts, costs, Stpck-Out-Risk (SOR) and Mean-TIme-Between-Stock-Out (MTBSO)
2. Justify investments, eliminate outages and eradicate redundant stock.

Justiry investments by convincing customers, managers and shareholders to invest in the correct level of spare parts. Eliminate outages by finding the right level of Irventory in seconds. Eradcate redundart stock by identiying slow moving stock and plan atemative strategles.

3. Based on de facto industry standard models.

Based on de facto industry standard models and proven In iteraly thousands of reaH-Hfe and simulated trials,
Spares Calculator Professional offers a sclertitc way to forecast spare parts.

User Comment

Spares Calutatar tas diven uea adertitc way bo work out how many spare pats we need. We tested Spsres Calcuatbro on a random ample of 20 ine liens used in our 12 operatons spresd acroas Aela. The results were ansingly courte. We now have an enterprise licence and use Spares Calcutatr in all of our procuremert and operatoral plarring projects".

Customers Include

ROGERS
WIRELESS

Alcatel-Lucent

4. Streamline budgets and costs.

File Edit View Help

Spares - How Many

- Use the MTBSO to evaluate what Comfort Level you can afford to have.
- Caveat -
- This calculation assumes a random distribution and is not accurate for NEW systems where a large number of identical are all installed at the same time.

Summary:

For a given set of performance data and an appropriate model, analysis of the data can accurately yield MTBF, MTTR for components and systems . The analysis can also yield information on where components and systems are in the lifetime curve so that you can make decisions about when to replace components and how many you should have in inventory (particularly important in long-lead-time components).
These data can be used to validate your RAMI Model of your accelerator systems.

Issues in Modeling

- "... no model is absolutely correct. In particular, however, some models are more useful than others." -
- The model should be sufficiently simple to be handled by available mathematical and statistical methods, and be sufficiently realistic such that the deducted results are of practical use.

Backup Slides

Most of these distribution functions

 are not Symmetric, so: Median , Mode and Mean are not the same

Median - $t_{m}: R\left(t_{m}\right)=50 \%$
Mode - $\quad t_{\text {mode }}: \max f(t)$

Example of a Non-Constant Failure Rate Curve: The "Bathtub" Curve

Infant Mortality or Burn-In:

According to MIL-STD-883C, burn-in is a test performed to screen or eliminate marginal components with inherent defects or defects resulting from manufacturing process.

Use of Burn-In

- One of environment stress screening (ESS) techniques

$$
\operatorname{MRL}(t)=\int_{0}^{\infty} R(x \mid t) d x=\frac{1}{R(t)} \int_{0}^{\infty} R(x+t) d x
$$

- Example: for

$$
R(t)=\frac{a^{2}}{(a+t)^{2}} \quad t \geq 0
$$

(A) Without burn-in
(B) After T_{0}

$$
\begin{array}{cc}
\operatorname{MTTF}=\int_{0}^{\infty} R(t) d t & \operatorname{MRL}\left(T_{0}\right)=\frac{1}{R\left(T_{0}\right)} \int_{0}^{\infty} R\left(x+T_{0}\right) d x \\
=\left.\frac{-a^{2}}{a+t}\right|_{0} ^{\infty}=a & =a+T_{0}>a
\end{array}
$$

Maintenance:

9
An important assumption for

(| effective maintenance is that |
| :--- |
| components will eventually have an |
| Increasing Failure Rate. |
| Maintenance can return the |
| component to the Constant Failure |
| Region. |

Terminal Mortality (Wear-Out)

Exponential Distribution (Model)

Constant Failure Rate

Single/Multiple Failure Modes

Example

- The higher the failure rate is, the faster the reliability drops with time

Weibull Distribution (Model) and Model Validation

Spallation
NEUTRON

Background of Weibull

- Waloddi Weibull, a Swedish inventor and engineer invented the Weibull distribution in 1937. The U.S. Air Force recognized the merit of Weibull's methods and funded his research to 1975.
- Leonard Johnson at General Motors improved Weibull's methods. He suggested the use of median rank values for plotting.
- The engineers at Pratt \& Whitney found that the Weibull method worked well with extremely small samples, even for 2 or 3 failures.
- Failure Probability Density is related to the Failure Probability by:

$$
f(x)=\int_{0}^{x} f(s) d s \quad f(x)=\frac{d(F(x))}{d x}
$$

- Reliability Function is related to the Failure Probability Density by:

$$
R(t)=1-F(t)=\int_{t}^{\infty} f(u) d u
$$

Failure Rate Function

- Increasing failure rate (IFR) v.s. decreasing failure rate (DFR)
$\lambda(t) \square \quad$ or $\quad \lambda(t) \square \quad$ respectively
- Exampies

$$
\begin{array}{ll}
\lambda(t)=c & \text { where } \mathrm{c} \text { is a constant } \\
\lambda(t)=a t \quad \square & \text { where } a>0 \\
\lambda(t)=\frac{1}{t+1} \quad \square & \text { for } \mathrm{t}>0
\end{array}
$$

Q-Q Plot for the Normal Distribution

- T~Normal (100, 400) Generate 50 data points

Formal Statistical Test Procedures

- Test for assumption in a more statistical way
- χ^{2} Goodness-of-Fit test
- Bartlett's test for Exponential
- Mann's test for Weibull
-Komogorov-Smirnov (KS) test

Graphical Model Validation

- Weibull Plot

$$
\begin{aligned}
& F(t)=1-R(t)=1-\exp \left[-\left(\frac{t}{\eta}\right)^{\beta}\right] \\
& \Rightarrow \quad \ln \ln \frac{1}{1-F(t)}=\beta \ln t-\beta \ln \eta \quad \text { is linear function of } \ln (\text { time }) .
\end{aligned}
$$

- Estimate $\hat{F}\left(t_{i}\right)$ at t_{i} using Bernard's Formula

For n observed failure time data

$$
\hat{F}\left(t_{i}\right)=\frac{i-0.3}{n+0.4}
$$

$$
\left(t_{1}, t_{2}, \ldots, t_{i}, \ldots t_{n}\right)
$$

