Practical Applications of Reliability Theory

George Dodson Spallation Neutron Source

ORNL is managed by UT-Battelle for the US Department of Energy

Topics

- Reliability Terms and Definitions
- Reliability Modeling as a tool for evaluating system performance
 - In the design phase what are the tradeoffs of cost vs. reliability performance?
 - In the operational phase, does the performance meet expectations?
- Analysis of the failure rate of systems or components
 - How do systems fail?
 - Is the failure rate "reasonable"?
- Analytical calculation for the number of Spares
 - What kinds of spares are there?
 - What is a "reasonable" number of spares?

Reliability Terms

- Mean Time To Failure (MTTF) for non-repairable systems
- Mean Time Between Failures for repairable systems (MTBF)
- Reliability Probability (survival) R(t)
- Failure Probability (cumulative density function) F(t)=1-R(t)
- Failure Probability Density f(t)
- Failure Rate (hazard rate) $\lambda(t)$
- Mean residual life (MRL)

Important Relationships

R(t) + F(t) = 1

$$f(t) = \lambda(t) \exp\left(-\int_{0}^{t} \lambda(u) du\right) = dF(t) / dt \qquad F(t) = \int_{0}^{t} f(u) du,$$

$$R(t) = 1 - F(t) = \exp\left(-\int_{0}^{t} \lambda(u) du\right) \qquad \lambda(t) = f(t) / R(t)$$

Where $\lambda(t)$ is the failure rate function

MTBF

The MTBF is widely used as the measurement of equipment's reliability and performance. This value is often calculated by dividing the total operating time of the units by the total number of failures encountered. This metric is valid only when the data is exponentially distributed. This is a poor assumption which implies that the failure rate is constant if it is used as the sole measure of equipment's reliability.

Modeling

- There are essentially 2 types of models
 - Static
 - $\lambda(t)$ s constant
 - Easy, if only life were this simple
 - Dynamic
 - $\lambda(t)$ has a complex functional form
- To build a model:
 - Create a logical structure of components
 - Specify the reliability of each component
 - Drill down the structure as deep as you need to and/or have data

SNS Static Model ((t) is constant) Uses Markov Chains

				_													
S A US Se ym Sb t 1	Equi	pment/Fail	ure Mode	Failus (1/h x	e Rate : 10 ⁻⁶)	Failure Rat	e Source 1	MTBF (h)	Percen t of Antici pated Failur es	Effective M for Unantici Failures	TBF pated F: (h) ()	Effective ailure Rate 1/h x 10 ⁻⁶)	No. of Equipm ents	No. of Spares Includ ed	Type of Redun dancy (1=hot 2=col d)	Repair (0=off- line, 1=on- line, 2=sup ermod	Effective Total Failure Rate (1/h x 10 ⁻ ⁶)
DTL RF	Transmitte	r		_	_												
Transm	itter	-		180	00	Maxu	nell	5556	0	5555 /	5	180.00	1.0	1	0	0	180.00
HVDS	inter			35	00	Ander	200	28571	ő	28571	4	35.00	1.0	1	0	0	35.00
Klystro	n			20	00	Tatlerico (P	AC2001)	50000	õ	50000	0	20.00	2.0	1	0	0	40.00
Load				13	33	Tallerico (P	AC2001)	75019	0	75018	8	13.33	2.0	1	0	0	26.66
Circula	tor			20	00	Tatlerico (P	AC2001)	50000	0	50000.	0	20.00	2.0	1	0	0	40.00
LLRF				10	00	Tallerico (P.	AC 2001)	100000	0	100000	.0	10.00	2.0	1	0	0	20.00
DTL/C	CL RF Wi	ndow		10	00	Tallerico (P	AC2001)	100000	0	100000	.0	10.00	2.0	1	0	0	20.00
							<i>.</i>			2763.3	3	361.88					361.66
ONE DTI	L RF STAT	TION TO	TAL														
ONE DTI RFQ and	L RF STAT	TION TO	TAL							919.8		1087.24	3.0	0	0	0	1084.98
ONE DTI RFQ and	L RF STAT		⊺AL		U	V	w	~		919.8	۷	1087.24	3.0	0	0	0	1084.98
ONE DTI RFQ and Estimated Average Annual Frequenc y of Repairs (=Spares)	Repair Personnel Required	Mean Time To Repair MTTR (h)	MTTR Source	Other Delays MTTR d (h)	Switch- over Time MTTS (h)	Mean Down Time MDT (h)	w Maximum Acceptable Total MDT/MTBF eff (x 10' ⁶)	Estimated Average Total Annual Repair Tim (h)	st An	919.8 eady State vailability	z Missior Time (h	Reliabil for miss time	3.0 ity ion	0	0	0	1084.98
ONE DTI RFQ and Estimated Average Annual Frequenc y of Repairs (=Spares)	L RF STAT DTL RF Repair Personnel Required	Mean Time To Repair MTTR (h) 2.0	MTTR Source	Other Delays MTTR d (h)	Switch- over Time MTTS (h)	v Mean Down Time MDT (h) 2.0	w Maximum Acceptable Total MDT/MTBF eff (x 10 ⁻⁶) 360.00	Estimated Average Total Annual Repair Tim (h)	st An 0	919.8 eady State vailability	Z Missior Time (h	Reliabil for miss time 0.9716	3.0 ity ion	0	0	0	1084.98
ONE DTI RFQ and Estimated Average Annual Frequenc y of Repairs (=Spares) 1.40 0.27	L RF STAT DTL RF e Repair Personnel Required	Mean Time To Repair MTTR (h) 2.0 4.0	MTTR Source	Other Delays MTTR d (h)	Switch- over Time MTTS (h)	Mean Down Time MDT (h) 2.0 4.0	W Maximum Acceptable Total MDT/MTBF eff (x 10' ⁶) 360.00 140.00	Estimated Average Total Annual Repair Tim (h) 5.58 2.17	Sto An 0 0	919.8 eady State vailability).999640).999860	Le Constantino de la constanti	1087.24 Reliabil for miss time 0.9716 0.9944	3.0 ity ion 11 16	0	0	0	1084.98
ONE DTI RFQ and F Estimated Average Annual Frequenc y of Repairs (=Spares) 1.40 0.27 0.31	L RF STAT DTL RF Repair Personnel Required	Mean Time To Repair MTTR (h) 2.0 4.0 3.5	MTTR Source MTTR Source allerico (PAC200) allerico (PAC200) allerico (PAC200)	Other Delays MTTR d (h) 0 0 0	Switch- over Time MTTS (h)	Mean Down Time MDT (h) 2.0 4.0 3.5	Maximum Acceptable Total MDT/MTBF eff (x 10' 6) 360.00 140.00 140.00	Estimated Average Total Annual Repair Tim (h) 5.58 2.17 3.26	sto An 0 0 0 0	919.8 eady State vailability).999640).999860).999860	2 Missior Time (h 160 160	1087.24 Reliabil for miss time 0.9716 0.9944 0.9936	3.0 ity ion 11 16 20	0	0	0	1084.98
ONE DTI RFQ and F Estimated Average Annual Frequenc y of Repairs (=Spares) 1.40 0.27 0.31 0.21	L RF STAT DTL RF Repair Personnel Required 2 2 3 3 3	Mean Time To Repair MTTR (h) 2.0 4.0 3.5 3.0	MTTR Source MTTR Source allerico (PAC200) allerico (PAC200) allerico (PAC200) allerico (PAC200)	Other Delays MTTR d (h)	Switch- over Time MTTS (h)	v Mean Down Time MDT (h) 2.0 4.0 3.5 3.0	Maximum Acceptable Total MDT/MTBF eff (x 10 ⁻⁶) 	Estimated Average Total Annual Repair Tim (h) 5.58 2.17 3.26 1.86	1 St A1	919.8 eady State vailability).999640).999860).999860).999920	2 Missior Time (h 160 160 160	1087.24 Reliabil for mission time 0.9716 0.9944 0.9936 0.9957	3.0 ity ion 11 16 20 43	0	0	0	1084.98
ONE DTI RFQ and Estimated Average Annual Frequenc y of Repairs (=Spares) 1.40 0.27 0.31 0.21 0.31	L RF STAT DTL RF Repair Personnel Required 2 2 3 3 3 3	Mean Time To Repair MTTR (h) 2.0 4.0 3.5 3.0 3.0 3.0	MTTR Source MTTR Source allerico (PAC200) allerico (PAC200) allerico (PAC200) allerico (PAC200) allerico (PAC200)	Other Delays MTTR d (h) 0 0 0 0 0 0 0	Switch- over Time MTTS (h)	v Mean Down Time MDT (h) 2.0 4.0 3.5 3.0 3.0 3.0	Maximum Acceptable Total MDT/MTBF eff (x 10° 6°) 360.00 140.00 140.00 79.98 120.00	Estimated Average Total Annual Repair Tim (h) 5.58 2.17 3.26 1.86 2.79	St A1	919.8 eady State vailability).999640).999860).999860).999920).999880	2 Missior Time (h 160 160 160 160	Reliabil for miss time 0.9716 0.9944 0.9936 0.9957 0.9936	3.0 ity ion 11 16 20 43 20	0	0	0	1084.98
ONE DTI RFQ and Estimated Average Annual Frequenc y of Repairs (=Spares) 1.40 0.27 0.31 0.21 0.31 0.16	L RF STAT DTL RF Repair Personnel Required 2 2 3 3 3 2	Mean Time To Repair MTTR (h) 2.0 4.0 3.5 3.0 3.0 2.0	MTTR Source allerico (PAC200) allerico (PAC200) allerico (PAC200) allerico (PAC200) allerico (PAC200) allerico (PAC200) allerico (PAC200)	Other Delays MTTR d (h) 0 0 0 0 0 0 0 0 0 0 2	Switch- over Time MTTS (h)	Mean Down Time MDT (h) 2.0 4.0 3.5 3.0 3.0 4.0	w Maximum Acceptable Total MDT/MTBF eff (x 10' 6) 360.00 140.00 140.00 79.98 120.00 80.00	Estimated Average Total Annual Repair Tim (h) 5.58 2.17 3.26 1.86 2.79 1.24	Sto An 00 00 00 00 00 00	919.8 eady State vailability).999640).999860).999860).999920).999880).999920	2 Missior Time (h 160 160 160 160 160	IO87.24 Reliabil for missitime 0.9716 0.9936 0.9936 0.9968	3.0 ity ion 11 16 20 43 20 05	0	0	0	1084.98
ONE DTI RFQ and Estimated Average Annual Frequenc y of Repairs (=Spares) 1.40 0.27 0.31 0.21 0.31 0.16 0.16	L RF STAT DTL RF Repair Personnel Required 2 2 3 3 3 2 2 2 2	Mean Time To Repair MTTR (h) 2.0 4.0 3.5 3.0 3.0 2.0 2.0 25.0	MTTR Source MTTR Source allerico (PAC200) allerico (PAC200) allerico (PAC200) allerico (PAC200) allerico (PAC200) allerico (PAC200) allerico (PAC200)	Other Delays MTTR d (h) 0 0 0 0 0 0 0 0 0 2 2 2	Switch- over Time MTTS (h)	Mean Down Time MDT (h) 2.0 4.0 3.5 3.0 3.0 4.0 27.0	W Maximum Acceptable Total MDT/MTBF eff (x 10' 6) 360.00 140.00 140.00 140.00 79.98 120.00 80.00 540.00	Estimated Average Total Annual Repair Tim (h) 5.58 2.17 3.26 1.86 2.79 1.24 8.37	St An	919.8 eady State vailability).999640).999860).999860).999880).999920).999920).999920	2 Missior Time (h 160 160 160 160 160 160	Reliabil for miss time 0.9716 0.9944 0.9936 0.9957 0.9936 0.9968 0.9968	3.0 ity ion 11 16 20 43 20 05 05	0	0	0	1084.98
ONE DTI RFQ and F Estimated Average Annual Frequenc y of Repairs (=Spares) 1.40 0.27 0.31 0.21 0.31 0.16 0.16 2.80	L RF STAT DTL RF Repair Personnel Required 2 2 3 3 3 2 2 3 3 3 3 3 3 3 3 3 3 3 3	Mean Time To Repair MTTR (h) 2.0 4.0 3.5 3.0 3.0 2.0 2.0 2.0 3.0 3.0 3.0 3.0	MTTR Source MTTR Source allerico (PAC200) allerico (PAC200) allerico (PAC200) allerico (PAC200) allerico (PAC200) allerico (PAC200) allerico (PAC200)	Other Delays MTTR d (h) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Switch- over Time MTTS (h)	Mean Down Time MDT (h) 2.0 4.0 3.5 3.0 3.0 4.0 27.0 4.0 27.0 4.0	Maximum Acceptable Total MDT/MTBF eff (x 10' 6) 360.00 140.00 140.00 79.98 120.00 80.00 540.00 1459.98	A Estimated Average Total Annual Repair Tim (h) 5.58 2.17 3.26 1.86 2.79 1.24 8.37 25.27	Sto An 00 00 00 00 00 00 00 00 00 00 00 00 00	919.8 eady State vailability).999640).999860).999860).999920).999920).999920).999920).9999460).999541	2 Missior Time (h 160 160 160 160 160	Reliabil for miss time 0.9716 0.9944 0.9936 0.9957 0.9936 0.9968 0.9968 0.9968	3.0 ity ion 11 16 20 43 20 05 05 77	0	0	0 DAK	1084.98

ATION

SOURCE

Dynamic Model

Uses of the Model

- Design Phase
 - Model is a simple "what if" tool for evaluating performance to compare the projected system reliability with the customer's expectations.
- Operational Phase
 - Validate model parameters with measured performance. Are you getting what you expected?
 - If not, questions to ask include, was the system:
 - Designed wrong
 - Built wrong
 - Installed wrong
 - Operated wrong
 - Maintained wrong
 - In a "sick" location

Time Distributions (Models) of the Failure Rate Function

Exponential Distribution

$$f(t) = \lambda e^{-\lambda t}$$

 Very commonly used, even in cases to which it does not apply (simple);
 Applications: Electronics, mechanical components etc.

Normal Distribution

$$f(t) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(t-\mu)^2}{2\sigma^2}}$$

Very straightforward and widely used;
 Applications: Electronics, mechanical components etc.
 Presentation name

Lognormal Distribution

- Very powerful and can be applied to describe various failure processes;
 Applications: Electronics, material, structure etc.
- Weibull Distribution

 $f(t) = \frac{\beta}{\eta} \left(\frac{t}{\eta}\right)^{\beta-1} e^{-\left(\frac{t}{\eta}\right)^{\beta}}$ > Very powerful and can be applied to describe various failure processes;

> Applications: Electronics, Rechanication components, material, structure etc.

Exponential Model

• Definition: Constant Failure Rate

$$\mathfrak{D}$$

$$\lambda(t) = f(t) / R(t) = \lambda$$

$$f(t) = \lambda \exp(-\lambda t) \qquad \lambda > 0, \ t \ge 0$$

$$R(t) = \exp(-\lambda t) = 1 - F(t)$$

$$R(x \mid t) = P_r(T > t + x \mid T > t) = \frac{e^{-\lambda(t+x)}}{e^{-\lambda t}} = e^{-\lambda x} = R(x)$$

Exponential Model Cont.

Statistical Properties

$$MTTF = \frac{1}{\lambda} \longrightarrow R(MTTF) = e^{-\lambda \times MTF}$$
$$= e^{-1} = 0.367879$$

$$Var(T) = \frac{1}{\lambda^2}$$

Median life = $(\ln 2)\frac{1}{\lambda} = 0.693147 \times MTTF$

Weibull Model

 Definition $f(t) = \frac{\beta}{\eta} \left(\frac{t}{\eta}\right)^{p-1} \exp\left|-\left(\frac{t}{\eta}\right)^{p}\right| \qquad \beta > 0, \ \eta > 0, \ t \ge 0$ $R(t) = \exp\left|-\left(\frac{t}{\eta}\right)^{\beta}\right| = 1 - F(t)$ $\lambda(t) = f(t) / R(t) = \frac{\beta}{n} \left(\frac{t}{n}\right)^{\beta - 1}$ 1s the Snape Parameter and

• β_{is} the Characteristic Lifetime (1/e) survival

Weibull Model Continued:

• Statistical Properties

$$MTTF = \eta \int_0^\infty t^{1/\beta} e^{-t} dt = \eta \Gamma \left(1 + \frac{1}{\beta}\right)$$
$$Var = \eta^2 \left[\Gamma \left(1 + \frac{2}{\beta}\right) - \left(\Gamma(1 + \frac{1}{\beta})\right)^2 \right]$$
Median life = $\eta \left((\ln 2)^{1/\beta}\right)$

Versatility of Weibull Model

Graphical Model Validation

- Use a Q-Q Plot for checking normality
 - Plot Probability Quantiles (ln(ln(1/median rank)/ vs. Model Distribution Quantiles
 - The result should be linear in ln(time) in the middle of the plot

• Estimate
$$Q(t_i) = 1 / \hat{F}(t_i)$$
 at for t_i using Bernard's Formula

$$\hat{F}(t_i)$$
 $(t_1, t_2, ..., t_i, ..., t_n)$

For *n* observed failure time data $\hat{F}(t_i) = \frac{i - 0.3}{n + 0.4}$

Example: Q-Q of Weibull Distribution and Weibull Fit (works well)

• T~Weibull(1, 4000) Generate 50 data points

LATION TRON RCE

Example: Q-Q Weibull Distribution and T-Normal Fit (obviously wrong functional form)

• T~Normal(100, 400) Generate 50 data points

ON

Analysis of the Failure Rate of Systems or Components

With a relatively modest failure data set you can:

- Determine what your failure rate is at any given time
- Watch this rate change with time, through Infant Failures and into Random Failures
- Predict the onset of Terminal Failures
- Alerts you to watch more closely for the predictive symptoms of failure
- Determine the cost-effectiveness of proactive replacement before failure occurs
- Closely watch your Spares (number of spares, time to repair or acquire replacements, cost)

Weibull in Excel

Using Excel for Weibull Analysis

by William W. Dorner

Many people use Microsoft Excel on a daily basis. Yet few people realiz the extent of Excel's analytical capabilities. Fewer still put these capabilitie work for process improvement, product improvement and profit.Most Exce users are aware of the common formulas and charts. But with some creativ users can produce tools like control charts, Pareto charts and box-and-whis plots (see "Using Excel for Data Analysis," *Quality Digest*, October 1997). And with a little guidance, users can employ more advanced statistical

http://www.qualitydigest.com/jan99/html/body_weibuHahtml

Weibull Using MS Excel

Figure 1	Failure Dat	8		Fig	ure 2: Prep	aring	Design A for We	ibull Analysis		
Design A Design B				A	В	С	D	E	F	
Sample	Cycles	Sample	Cycles	1	Design A Cycles	Rank	Median Ranks	1/(1~ Median Rank)	In(In(1/(1~ Median Rank)))	In(Design A Cycles)
1	726,044	11	529,082	2	384,558	1	0.067307692	1.072164948	-2.663843085	12.8598499
2	615,432	12	729,957	3	483,331	2	0.163461538	1.195402299	-1.72326315	13.088457
3	508,077	13	650,570	4	508,077	3	0.259615385	1.350649351	-1.202023115	13.13838829
4	807,863	14	445.834	5	515,201	4	0.355769231	1.552238806	-0.821666515	13.15231239
5	755,223	15	343,280	6	615,432	5	0.451923077	1.824561404	-0.508595394	13.33007974
6	848,953	16	959,903	7	666,686	6	0.548076923	2.212765957	-0.230365445	13.41007445
7	384,558	17	730.049	8	726,044	7	0.644230769	2.810810811	0.032924962	13.4953659
8	666.686	18	730.640	9	755,223	8	0.740384615	3.851851852	0.299032932	13.53476835
9	515,201	19	973.224	10	807,863	9	0.836538462	6.117647059	0.593977217	13.60214777
10	483,331	20	258,006	11	848,953	10	0.932692308	14.85714286	0.992688929	13.6517591

1) Order by number of cycles (in accelerators, hours to failure)

2) Calculate the "Median Rank"=((B2-0.3)/(10+0.4))

3) Be sure that the Analysis ToolPak Add-In is loaded into Excel. While on the page you just created, from the menu bar, select Tools and Data Analysis. Scroll down and highlight "Regression" and click OK. A data-entry window will pop up.
2.Under "Input Y Range," type: \$E\$1:\$E\$11.
3.For "Input X Range," type: \$F\$1:\$F\$11.
4.Click to add a checkmark in the box for "Labels."
5.For "Output Options," select "New Worksheet Ply."
6.Click to add a checkmark in the box for "Line Fit Plots."

7.Click OK. Excel will perform the regression and place the output on a new worksheet.

Fig	igure 3: Results of Linear Regression for Design A											
	A	В	С	D	E	F	G					
1	SUMMARY OUTPUT											
2												
3	Regression Statistics											
4	Multiple R	0.98538223										
5	R Square	0.97097815										
6	Adjusted R Square	0.96735041										
7	Standard Error	0.20147761										
8	Observations	10										
9												
10	ANOVA											
11		df	55	MS	F	Significance F						
12	Regression	1	10.86495309	10.86495309	267.6543319	1.96274E-07						
13	Residual	8	0.324745817	0.040593227								
14	Total	9	11.18969891									
15												
16		Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%					
17	Intercept	-57.1930531	3.464488033	-16.5083708	1.82953E-07	-65.18218204	-49.2039242					
18	In(Design A Cycles)	4.2524822	0.259929377	16.36014462	1.96274E-07	3.653083597	4.851880811					
19	Beta (or Shape Paran	neter) = 4.25	7									
20	Alpha (or Characteris	tic Life) = 693,38	0 <u>-</u> '									
21												

Note the: Shape Parameter $\beta > 1$ Terminal Mortality Characteristic Lifetime, where 1/e = 62.3%have failed.

SNS RF High Voltage Converter Modulator 2008

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	-2.217586473	0.176953141	-12.53205486	1.53932E-06	-2.625641148	-1.809531798	-2.625641148	-1.809531798
In(Design A Cycles)	0.391732899	0.034997459	11.19318115	3.63718E-06	0.311028614	0.472437184	0.311028614	0.472437184
Beta (or Shape Parameter) =	0.391732899							

Alpha (or Characteristic Life) = 287.4260525

RESIDUAL OUTPUT

Observation	Predicted In(In(1/(1-I	Median Rank)))	Residuals
	1	-2.330281006	-0.33356208
	2	-2.258859654	0.535596503
	3	-1.038227226	-0.16379589
	4	-0.534731736	-0.286934779
	5	-0.447105645	-0.061489749
	6	-0.424714814	0.194349369
	7	0.274277326	-0.241352364
	8	0.294262312	0.00477062
	9	0.452409836	0.141567381
	10	0.781837942	0.210850988

Beta =0.39 (Infant Failures) Alpha = 287 Adjusted R square =0.93

The λ for an Exponential model = 475!!

VME Crate Power Supplies (2009)

VME h	ours to			1/(1-Median	In(In(1/(1-Median	In(Design A
failure	Rank	M	edian Ranks	Rank)	Rank)))	Cycles)
	7536	1	0.009162304	1.009247028	-4.688058902	8.927446816
	8544	2	0.022251309	1.022757697	-3.794124242	9.052984561
	29136	3	0.035340314	1.036635007	-3.324794914	10.2797298
	30240	4	0.048429319	1.050894085	-3.002931896	10.31692083
	36024	5	0.061518325	1.065550907	-2.756842175	10.49194066
	41496	6	0.07460733	1.080622348	-2.556998447	10.63335232

SUMMARY OUTPUT

Regression Statistics							
Multiple R	0.931357						
R Square	0.867426						
Adjusted R Square	0.834283						
Standard Error	0.319986						
Observations	6						

ANOVA

						Significanc
	df		SS	MS	F	e F
Regression		1	2.679769	2.679769	26.17191	0.006906
Residual		4	0.409564	0.102391		
Total		5	3.089333			

	Coefficient	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	-12.9954	1.889141	-6.87899	0.00234	-18.2405	-7.75029	-18.2405	-7.75029
In(Design A Cycles)	0.968949	0.189401	5.115849	0.006906	0.443086	1.494812	0.443086	1.494812
Beta (shape Parameter)	0.968949	\leq						
Alpha	667861.2	77.65828						
	Hrs `	Years	R					
RESIDUAL OUTPUT					`Ret	a-0 C)7	
				\sim	Den	1 -0.7		
	Predicted				\ Alm	$h_0 - 7$	Q Vra	a
	In(In(1/(1-				Alp	11 a — /	0 113	5.
Observation	Nedian Rank)))	Residuals						
	1 -4.34514	-0.34292						
	2 -4.2235	0.42938						
:	3 -3.03485	-0.28994						
	4 -2.99881	-0.00412						
:	5 -2.82923	0.072387						
	6 -2 69221	0 13521						

In(Design A Cycles) Line Fit Plot

Classes of Spares

- In all evaluations of Mean Time to Repair, there are assumptions on the availability of spares for systems, structures and components. In most cases, the assumption is that there is a spare of some sort available to install. There are a number of classes of spares. They include;
- A "true spare" consisting of a "like for like or equivalent" "on the shelf, tested and ready to go ", "plug compatible" replacement unit.
- A "like for like or equivalent" that is installed in some other system that is not required for operation of the accelerator systems e.g. a Test Stand.
- A system structure or component that must be modified to be used as a spare.
- Only a "true spare" will not contribute to down time. In both other classes, demounting and modification of the replacement will necessarily contribute to downtime.

Spares

Beyond the "larger of 10% or 2" rule of thumb, the evaluation of the baseline number of spares should include a calculational basis which considers:

- 1. Number of installed units
- 2. Mean Time Between Failures (estimated at first, then validated against experience)
- 3. Mean Time to Repair or Replace in the calculation.

The result will be a Mean Time to Out of Stock as a function of the number of spare units.

 Spares Calculator code is available – validated against MIL Spec -U.S. Navy, Reliability Engineering Handbook, NAVAIR 01-1A-32

Spares Calculator 2010 Professional

Powerful and Easy to Learn Spare Parts Forecasting Software

Spares Calculator 2010 Professional is a powerful and accurate tool that lets you work out the risk of equipment stock-out so that you can plan your contracts and logistics operations accordingly. What's more, the package is easy to use so there's no need for specialist knowledge, complex manuals or time consuming training. Whether you supply, procure or manage spare equipment, Spares Calculator makes an essential purchase.

With Lupgrade Intal Download Watch Demo Watch Demo Webinar Registration Comparison

User Comment

"Spares Calculator has given us a scientific way to work out how many spare parts we need. We tested Spares Calculator on a random sample of 20 line items used in our 12 operations spread across Asia. The results were amazingly accurate. We now have an enterprise licence and use Spares Calculator in all of our procurement and operational planning projects."

Customers Include

Key Facts

1. Easy to use spare parts forecasting software.

Use Spares Calculator Professional to determine the optimum level of spare parts inventory. Trade-off spare parts, costs, Stock-Out-Risk (SOR) and Mean-Time-Between-Stock-Out (MTBSO).

2. Justify investments, eliminate outages and eradicate redundant stock.

Justify investments by convincing customers, managers and shareholders to invest in the correct level of spare parts. Eliminate outages by finding the right level of inventory in seconds. Eradicate redundant stock by identifying slow moving stock and plan alternative strategies.

3. Based on de facto industry standard models.

Based on de facto industry standard models and proven in literally thousands of real-life and simulated trials, Spares Calculator Professional offers a scientific way to forecast spare parts.

4. Streamline budgets and costs.

L Spares Calculator

File Edit View Help

_ **-** ×

Spares – How Many

- Use the MTBSO to evaluate what Comfort Level you can afford to have.
- Caveat
 - This calculation assumes a random distribution and is not accurate for NEW systems where a large number of identical are all installed at the same time.

Summary:

For a given set of performance data and an appropriate model, analysis of the data can accurately yield MTBF, MTTR for components and systems . The analysis can also yield information on where components and systems are in the lifetime curve so that you can make decisions about when to replace components and how many you should have in inventory (particularly important in long-lead-time components).

These data can be used to validate your RAMI Model of your accelerator systems.

Issues in Modeling

• "... no model is absolutely correct. In particular, however, some models are more useful than others." –

• The model should be sufficiently simple to be handled by available mathematical and statistical methods, and be sufficiently realistic such that the deducted results are of practical use.

Backup Slides

Most of these distribution functions are not Symmetric, so: Median , Mode and Mean are not the same

Example of a Non-Constant Failure Rate Curve: The "Bathtub" Curve

Infant Mortality or Burn-In:

According to MIL-STD-883C, burn-in is a test performed to screen or eliminate marginal components with inherent defects or defects resulting from manufacturing process.

Use of Burn-In

One of environment stress screening (ESS) techniques

$$MRL(t) = \int_0^\infty R(x \mid t) dx = \frac{1}{R(t)} \int_0^\infty R(x+t) dx$$

- Example: for

$$R(t) = \frac{a^2}{(a+t)^2} \quad t \ge 0$$
(A) Without burn-in

$$MTTF = \int_0^\infty R(t) dt$$
(B) After T_0

$$MRL(T_0) = \frac{1}{R(T_0)} \int_0^\infty R(x+T_0) dx$$

$$= \frac{-a^2}{a+t} \Big|_0^\infty = a$$

$$= a + T_0 > a$$

Maintenance:

Hazard Rate

An important assumption for effective maintenance is that components will eventually have an Increasing Failure Rate. 3 Maintenance can return the component to the Constant Failure Region. 2

Constant Failure Rate Region Wear-Out Region

Terminal Mortality (Wear-Out)

Hazard Rate

Time t

Exponential Distribution (Model)

Constant Failure Rate

Single/Multiple Failure Modes

Example

• The higher the failure rate is, the faster the reliability drops with time

National Laboratory SOURCE

Weibull Distribution (Model) and Model Validation

Wallo di Weibull 1887-1979 Photo by Sam C. Saunders

Background of Weibull

• Waloddi Weibull, a Swedish inventor and engineer invented the Weibull distribution in 1937. The <u>U.S. Air Force</u> recognized the merit of Weibull's methods and funded his research to 1975.

• Leonard Johnson at <u>General Motors</u> improved Weibull's methods. He suggested the use of median rank values for plotting.

• The engineers at <u>Pratt & Whitney</u> found that the Weibull method worked well with extremely small samples, even for 2 or 3 failures.

• Failure Probability Density is related to the Failure Probability by:

$$f(x) = \int_{0}^{x} f(s)ds \qquad \qquad f(x) = \frac{d(F(x))}{dx}$$

• Reliability Function is related to the Failure Probability Density by:

$$R(t) = 1 - F(t) = \int_t^\infty f(u) \, du$$

Failure Rate Function

- Increasing failure rate (IFR) v.s. decreasing failure rate (DFR)
- $\lambda(t)$ or $\lambda(t)$ respectively • Examples

 $\lambda(t) = c$ where c is a constant $\lambda(t) = at$ \Box where a > 0 $\lambda(t) = \frac{1}{t+1}$ \Box for t > 0

Q-Q Plot for the Normal Distribution

• T~Normal(100, 400) Generate 50 data points

TION

Formal Statistical Test Procedures

Test for assumption in a more statistical way

- χ^2 Goodness-of-Fit test
- Bartlett's test for Exponential
- Mann's test for Weibull
- •Komogorov-Smirnov (KS) test

Graphical Model Validation

• Weibull Plot

$$F(t) = 1 - R(t) = 1 - \exp\left[-\left(\frac{t}{\eta}\right)^{\beta}\right]$$
$$\Rightarrow \quad \ln \ln \frac{1}{\eta} = \beta \ln t - \beta \ln \eta$$

 $\Rightarrow \ln \ln \frac{1}{1 - F(t)} = \beta \ln t - \beta \ln \eta \quad \text{is linear function of } ln(\text{time}).$

• Estimate $\hat{F}(t_i)$ at t_i using Bernard's Formula

For *n* observed failure time data

$$\hat{F}(t_i) = \frac{i - 0.3}{n + 0.4}$$

